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Abstract. The masses of the SU(3) × SU(6) hadrons are calculated in the chiral-invariant phase space
(CHIPS) model as a sum of the mean energies of the quarks at a constant temperature Tc with the color-
magnetic splitting and the color-electric shift. The masses of hadrons are parametrized by four constants:
Tc, ms, ECE and ACM. With the same number of parameters the CHIPS model fits the masses of hadrons
better than the classic bag model. The small mass of the d-quark (md = 2.7 MeV) is used to prove that
the isotopic shifts of hadrons can be explained by the mass difference between the d- and u-quarks. The
dibaryon mass is estimated in CHIPS to be 200 MeV higher than in the bag model. The prediction for the
mass of the α∗ cluster is about the same in both models. It is close to 4 · m∆.

PACS. 12.39.Ki Relativistic quark model – 12.40.Yx Hadron mass models and calculations

1 Introduction

The CHIPS event generator [1–3] is based on the phase
space distribution for quarks. The u- and d-quarks are
massless and all phase space integrals are simple. The
formal assumption of the massless strange quark did not
change the predicted spectra of hadrons, as the real mass
of the strange quark is indirectly taken into account in the
masses of the secondary strange hadrons.

It is not clear why low-energy processes, such as nu-
clear pion capture at rest [2] or photo-nuclear reactions
below the pion production threshold [3], are successfully
calculated on the quark level. To prove the applicability of
the CHIPS model at low energies the masses of hadrons
are calculated in this paper. When calculating hadronic
masses it is not possible to neglect the mass of the strange
quark. The mass of the strange quark (ms = 198MeV)
is found to be comparable with the temperature value
(Tc = 221MeV). The critical temperature was first pro-
posed by R. Hagedorn [4], but for hadrons rather than
for quarks. In quark models the critical temperature cor-
responds to the chiral-restoration temperature. The ap-
proach based on asymptotically free quarks seems to be
reasonable because, as it was shown in [5], at tempera-
tures close to the critical temperature the effective cou-
pling constant g(T ) is small and it is possible to use the
current masses of quarks and apply perturbative QCD.
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In this paper eq. (1) of the first publication of
CHIPS [1] is explained in detail and generalized for the
massive quarks. Only the light quark hadrons are calcu-
lated, although the phase space mass formula is general
and can also be applied to hadrons consisting of heav-
ier quarks. But the gluon exchange forces are so strong
for heavy quarks that the kinematic contributions can
be significantly distorted. So the light hadrons were se-
lected because there exists an algorithm for calculating the
color-electric and color-magnetic interactions. It should be
noted that the color-electric and color-magnetic terms are
not a part of the CHIPS model, and can be considered
only as an external empirical part of the calculations.

The most informative section of the paper is the second
section where the mean effective mass of a few quarks at
constant temperature are calculated. In the third section
the contributions of the color-electric and color-magnetic
interactions are calculated. In the last section the masses
of hadrons consisting of light quarks are calculated and
compared both to experimental values and to the values
calculated in the classic bag model [6].

2 The mean effective mass of a few quarks at
critical temperature

The calculations in this section are general and can be con-
sidered as a kind of “thermodynamics” developed for the
case of a small number of particles. In other words, this is
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an attempt to consider the state of a few labeled particles
in the constant-temperature environment. In general, the
energy fluctuations for the labeled particles are relatively
big and the labeled particles can diffuse away from each
other. In the case of colored particles the situation is more
definite. Firstly, the colored quarks are confined, which
means that they do not diffuse away from each other. Sec-
ondly, the colored quarks are combined in color singlets
(hadrons), most of the ground states of which are stable.
The large width of the energy distribution of the asymp-
totically free quarks is reduced because most of the decay
channels into colored fragments are closed. Thirdly, the
confined quark system can be considered as a relativisti-
cally invariant object at finite temperature.

The important question of the model is the nature
of the local relativistic invariant environment at constant
temperature. This question needs further clarification but
just to have some idea the hypothesis of Nathan Isgur [7]
can be mentioned. On the boundary of the perturbative
and non-perturbative vacua the energy density of space
becomes negative. At this condition a lot of virtual gluonic
degrees of freedom can be excited on the hadronic surface,
so this surface can play the role of the universal relativis-
tic invariant “thermostat” (the environment at constant
temperature). Alternatively, the Tc of the CHIPS model
can be connected with the pion Mott temperature of the
recent chiral quark model (CQM) [8] (TCQM

c = 186MeV).
For n-particles the integral over states with different

total energies at a fixed temperature Tc (the Gibbs canon-
ical distribution) can be written as

Fn(β) =
∫

e−βEΦn(E)d4p, (1)

where β = 1
Tc

is used just for convenience and Φn(E) is
an n-quark phase space integral which is defined as

Φn(E) =
∫

δ

(
n∑

i=1

Ei − E

)
δ3

(
n∑

i=1

pi

)
n∏

i=1

d3pi

2Ei
. (2)

To make eq. (1) relativistically invariant it is necessary to
rewrite it in the following form:

Fn(β) =
∫ ∞

(Σmi)2
ds

∫
d4p δ(p2 − M2) e−βEΦn(M), (3)

where s = M2 and M is the invariant mass of n-quarks.
An integration over the energy (p0) and the solid angle
results in

Fn(β) = 2π
∫ ∞

(Σmi)2
ds

∫ ∞

M

√
E2 − M2dEe−βE Φn(M).

(4)
Using the McDonald’s function K1 one can rewrite this
equation as

Fn(β) =
4π

β

∫ ∞

Σmi

M2 K1(βM) Φn(M)dM. (5)

Substituting the integral from eq. (2) for Φn(E) in eq. (1),
changing the order of integration and integrating over d4p,

one can obtain the following result:

Fn(β) =
n∏

i=1

∫ ∞

mi

e−βEi
d3pi

2Ei
=

n∏
i=1

fi(β,mi). (6)

Using the same McDonald’s function K1, the fi-functions
can be written as

fi(β,mi) = 2π
mi

β
K1(βmi). (7)

With this notation the mean-squared invariant mass of
the n-particles can be calculated as a ratio

〈sn〉 =

∫ ∞
Σmi

M4 K1(βM) Φn(M)dM∫ ∞
Σmi

M2 K1(βM)Φn(M)dM
. (8)

Taking into account that the denominator is a second
derivative of the numerator, eq. (8) can be rewritten in
the following form:

〈sn〉 =
d2β2Fn(β)

Fn(β)β2(dβ)2
. (9)

To get the final result it is enough to substitute fn(β) from
eq. (7) to eq. (6) and then calculate the derivatives. The
result can be written as

〈sn〉 =
n∑

i=1

m2
i + 2

n∑
i=1

n∑
j>i

(2Tc + xi)(2Tc + xj), (10)

where xi = mi
K0(miβ)
K1(miβ) . Taking into account an expansion

of the McDonald’s function for mi � Tc, we find that at
this condition xi = mi − 1

2Tc, and eq. (10) gives the well-
known thermodynamic result for n � 1: the mean kinetic
energy per particle at temperature Tc is 3

2Tc. In addition
it is found that for small n the mean kinetic energy can be
calculated more accurately as 3(n−1)

2n Tc. Equation (10) for
the case of massless particles (xi = 0) proves eq. (1) of [1].

For hadrons all channels of decay in colored partons are
closed. It makes hadrons narrow or even stable. When cal-
culating the hadronic masses it was assumed that, when
hadrons become narrow, the value of the mean-squared
mass is not changed. To clarify why the mass formula,
eq. (10), is more promising for the mass spectrum calcu-
lations than a sum of the constituent masses of quarks,
let us consider the simplest case of π/ω mesons and N/∆
baryons. For massless u- and d-quarks the color-electric
contribution, as shown in [6], is zero. So only the color-
magnetic interactions split the π/ω mesons and N/∆
baryons. As explained in the following section the un-
split masses are mM = 1

4 (3 · mω + mπ) = 622MeV and
mB = 1

2 (m∆ + mN ) = 1085.5MeV. The ratio is 1.745,
not 1.5 = 3·mq

2·mq
. The bag model in the case of massless u-

and d-quarks gives 1.65. Equation (10) gives 1.732, which
is much closer to the experimental value.
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3 Color-electric shift and color-magnetic
splitting of hadronic masses

As shown in [6], for the light hadrons the color-electric
term is zero for hadrons with equal masses of quarks (π,
ω, φ, N , ∆, Ω), because in this case the color charge den-
sity vanishes locally. For hadrons with different masses of
quarks (K, Λ, Σ, Ξ) the color-electric shift is a constant
value, because in the K-meson the contribution of only
one qs electrostatic interaction must be added and in any
baryon two qs interactions must be added, but each is
twice as small as in the K-meson, since the colored-gluon
interaction is proportional to 〈λi, λj〉 = − 〈λ2〉

n−1 (it is − 16
3

for mesons and − 8
3 for baryons).

The color-magnetic splitting is more complicated. Us-
ing the δ(r)-term of the spin-spin interaction part in the
Hamiltonian, and by replacing the masses of the quarks
by their mean energies one can show that in addition to
the same factor 〈λi, λj〉 the color-magnetic contribution
to masses is proportional to the spin product 〈si, sj〉, in-
versely proportional to the product of the mean energies
of the quarks Ei · Ej , and proportional to |ψ(0)|2. The
|ψ(0)|2 factor is inversely proportional to the perturbative
volume of the hadron.

In the case of equal mean energies of quarks the sum
of the spin products can be easily calculated:

n · 〈s2〉 + 2 ·
∑
i>j

〈si, sj〉 = 〈S2〉, (11)

where n is the number of quarks and 〈s2〉 = s · (s + 1) is
3
4 for quarks and octet baryons, 15

4 for decuplet baryons,
0 for pseudo-scalar mesons, and 2 for vector mesons. So
for the pseudo-scalar mesons the sum of products is − 3

4

and for the vector mesons it is 1
4 . Similarly, it is − 3

4 for
the octet baryons and 3

4 for the decuplet baryons. These
coefficients were used in the previous section, where the
unsplit π/ω and N/∆ masses were evaluated.

If the masses of quarks are different and the 1
Ei·Ej

fac-
tor cannot be factored out, it is necessary to know in which
state the quarks with the same masses are. In the case of
the qqs hadrons the qq pair can be in the S = 0 or S = 1
state. As the wave function is anti-symmetric with respect
to the color charge of quarks, the identical quarks cannot
be in the S = 0 state, so only the ud-diquark can be in
the S = 0 state. The residual s-quark cannot have spin-
spin interactions with the S = 0 ud-diquark, so both qs
contributions are 0. To match the total sum the 〈su, sd〉
spin product must be equal to − 3

4 . In the opposite case,
when uu-, ud-, or dd-diquarks are in the S = 1 state, the
spin product for such qq pairs is 1

4 , and the qs spin prod-
ucts can be found from the total sum value: 〈sq, ss〉 = − 1

2 .
The aij = −〈λi, λj〉〈si, sj〉 coefficients together with the
b-flags of the color-electric contribution are listed in ta-
ble 1. The mean energy for equal masses of quarks is√

〈sn〉
n . For K-mesons the mean energies are calculated

using the condition of equal moments of quarks. For the
Λ- and Σ-hyperons the mass excess in respect to the N/∆

Table 1. Coefficients of the color-magnetic and flags of the
color-electric contributions to hadronic masses.

H aqq aqs ass b

π0 −4 0 0 0

ω 4
3

0 0 0

K 0 −4 0 1

K∗ 0 4
3

0 1

η8 0 0 −4 0

φ 0 0 4
3

0

d∗ − 4
3

0 0 0

α∗ −3 0 0 0

N −2 0 0 0

∆ 2 0 0 0

Λ −2 0 0 1

Σ 2
3

− 8
3

0 1

Σ∗ 2
3

4
3

0 1

Ξ 0 − 8
3

2
3

1

Ξ∗ 0 4
3

2
3

1

Ω− 0 0 2 0

unsplit mass is added to the energy of the strange quark.
For the Ξ-hyperons the missing mass with respect to the
unsplit Ω− mass is subtracted from the mean energy of
the u- or d-quark.

The volume of the perturbative space was assumed to
be proportional to

√
n. Thus, the resulting formula for the

hadronic masses can be written as

M =
√

〈sn〉 + b · ECE +
ACM√

n

n∑
i=1

∑
j<i

aij

Ei · Ej
, (12)

where 〈sn〉 is defined by eq. (10), and the b and aij coef-
ficients are listed in table 1.

4 Comparison with experimental data

The masses of hadrons have not been fitted. Instead, the
main parameters were estimated using different groups
of hadrons. The Tc and ACM parameters were estimated
using the masses of π/ω and N/∆ hadrons which con-
sist of only u- and d-quarks and are not shifted by the
color-electric interactions. The masses of the φ and Ω−
hadrons, which are also not shifted by the color-electric
interactions, were used to estimate ms. The color-electric
constant ECE was estimated to fit the rest of the strange
mesons and hyperons. The small mass of the d-quark was
used to find out how the isotopic shifts of hadronic masses
are correlated with the mass difference of the u- and d-
quarks. The calculated masses are listed in table 2 for
Tc = 221MeV, mu = 0, md = 2.7MeV, ms = 198MeV,
ECE = 16MeV, ACM = 0.0165GeV3. These parameters
match the B1/4, Z0, αs, mq, and ms parameters of the two
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Table 2. Masses of hadrons. The Mbag values are taken
from [6] for mq = 0, ms = 279 MeV and mq = 108 MeV, ms =
353 MeV cases. In the CHIPS calculations Tc = 221 MeV,
mu = 0, md = 2.7 MeV, ms = 198 MeV, ECE = 16 MeV,
ACM = 0.0165 GeV3. All hadronic masses are quoted in MeV.

H Mexp Mbag
cur |∆M | Mbag

con |∆M | MTc
cur |∆M |

π0 140 280 140 175 35 152 12

ω 783 783 0 783 0 785 2

p 938 938 0 938 0 939 1

n 939 938 1 938 1 941 2

∆ 1232 1233 1 1233 1 1231 1

K+ 494 497 3 371 123 485 9

K0 498 497 1 371 127 489 9

K∗+ 892 928 36 925 33 898 6

K∗0 896 928 32 925 29 899 3

Λ 1116 1105 11 1103 13 1123 7

Σ+ 1189 1144 45 1145 44 1182 7

Σ0 1193 1144 49 1145 48 1185 8

Σ− 1197 1144 53 1145 52 1187 10

Σ∗+ 1383 1382 1 1381 2 1382 1

Σ∗0 1384 1382 2 1381 3 1384 0

Σ∗− 1387 1382 5 1381 6 1385 2

η8 754 693 61 693 61 742 12

φ 1019 1068 49 1063 44 1018 1

Ξ0 1315 1289 26 1286 29 1320 5

Ξ− 1321 1289 32 1286 35 1323 2

Ξ∗0 1532 1529 3 1528 4 1531 1

Ξ∗− 1535 1529 6 1528 7 1533 2

Ω− 1673 1672 1 1672 1 1674 1

d∗ 2160 2366

α∗ 4880 4823

cases of calculations in [6] (the “cur” index corresponds to
the current masses of quarks mq = 0, ms = 279MeV and
the “con” index corresponds to the constituent masses of
quarks mq = 108MeV, ms = 353MeV).

Comparison of the two models with experiment shows
that the mass values calculated in the CHIPS model are
much closer to the experimental values. For mq = 0 the
bag model gives a very bad prediction for the pion mass.
For mq = 108MeV the bag model prediction for mπ is bet-
ter, but in this case the kaon mass becomes too small. All
the other mass values in the bag model seem to be inde-
pendent of the u- and d-quark masses. Another important
value is the Λ/Σ mass difference which is experimentally
80.6MeV. In the bag model it is about 40MeV and in
CHIPS it is 59MeV. Another test can be done for the
mΣ∗ −mΣ and mΞ∗ −mΞ values which must be equal in
SU(6) symmetric models. The mean experimental value
for these two differences is 203.5MeV. In the bag model it
is 239MeV and in the CHIPS model it is 205.1MeV. The
last test is the φ-meson mass, which is much closer to the
experimental value in the CHIPS calculations than in the
bag model calculations.

One line in the table needs special explanation. This is
the η8 mass. It is not clear how the experimental value of

the η8-particle can be estimated, because the annihilation
diagrams [6] make additional contribution to the η masses.
The result of this mixing can be written for the two-quark
states η = 1√

6
(ūu + d̄d − 2s̄s) and η′ = 1√

3
(ūu + d̄d + s̄s)

in the form of the mass matrix

mη =

(
mπ + 2

3Egg ,
√

2
3 Egg√

2
3 Egg , mη8 + 1

3Egg

)
, (13)

where mπ is used for mη0 . The resulting mass formula is

mη8 = mη′ − 1
2
(mη − mπ). (14)

This is how the “experimental” value of the mη8 was cal-
culated. Another interpretation of the η and η′ masses
could be the splitting of the mη8 because of the anni-
hilation diagrams. In this case one might expect that
mη8 = 1

2 (mη′ + mη). It is interesting that both ap-
proaches give the same value for mη8 (754.0MeV and
752.5MeV correspondingly), so the additional mass for-
mula mη = 1

2 (mη′ + mπ) can be written. The physical
meaning of this empirical mass formula is not clear. Nev-
ertheless, the CHIPS value coincides with the mη8 mass
with good accuracy.

The calculated isotopic shifts of hadrons determined
by the mass difference of the d- and u-quarks are quali-
tatively correct, but in the case of Σ and Σ∗ the mass of
Σ− differs from the mass of Σ0 by more than the mass
of Σ0 differs from the mass of Σ+. Taking into account
that, being proportional to the sum of the charge products
of the quarks, the electromagnetic shift for the positive
strange hyperons is about zero, the negative hyperons are
shifted up and the neutral hyperons are shifted down by
the same value, the residual electromagnetic corrections
can be estimated as 1MeV (0.8MeV for the Σ-hyperons
and 1.3MeV for the Σ∗-hyperons).

The mass of the lowest dibaryon state (m∗
d =

2366MeV) calculated in CHIPS is larger than the mass
predicted by the bag model (2160MeV). It better matches
the maximum in the NN interaction cross-section (

√
s ≈

2500MeV). So one can expect the dibaryons to play an
important role in nucleon-nucleon interactions. The mass
of the biggest S-wave multiquark cluster (α∗) is almost
the same for both models. It is close to the total mass of
the four ∆-isobars.

5 Conclusion

The CHIPS model based on the “temperature of the non-
perturbative vacuum” hypothesis seems to be at least as
successful as the bag model based on the “pressure of the
non-perturbative vacuum” hypothesis. In both models the
current masses of quarks can be used.

The d∗ and α∗ clusters are considered to have a com-
mon perturbative space, but they must not be identified
with the nuclear clusters of the CHIPS event generator [2],
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as the nuclear clusters result from the quark exchange in-
teractions between nuclear nucleons and the d∗ and α∗
clusters are just hypothetical particles.

The CHIPS model is SU(3) × SU(6) symmetric and
the success of the CHIPS calculations of the masses of
hadrons consisting of light quarks proves the applicability
of the CHIPS event generator at extremely low energies,
when the free energy is small and a large number of degrees
of freedom is not explicit.

It is a pleasure to thank Prof. Yu. A. Simonov and Dr. M.
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by the grant CERN-INTAS 99-0377.
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